
SHORT PML GUIDE 

By Adnan Dervišević  

 

 

 

 

INTRODUCTION 

 

 PML (Programmable Macro Language) is an important aspect of PDMS. It can make life easier 

for designers, drafters and administrators by automating some common tedious tasks, reviewing, etc.  

The goal of this guide is to cover some basic principles of programming through an example macro that 

fixes orientation of equipment in design module. For more information, I suggest reading the Software 

Customization Guide and Software Customization Reference Manual, both supplied with PDMS. 

  At this moment, PML is in its second revision called PML2 which is an object oriented language 

(well almost, but that is beyond the scope of this guide). It is an extension of original PML1 specifically 

designed to handle forms & menus. Macro file that accompanies this guide mostly uses PML1 syntax, as 

it is a good starting point for further learning.  

 

GETTING STARTED 

 

 All you need to write PML code is a simple text editor. Notepad will do. However, I strongly 

recommend using editor with syntax highlighting. Crimson Editor (now developed by Emerald Editor 

community) is a good choice. You can download the latest version from 

http://sourceforge.net/projects/emeraldeditor/files/crimsoneditor/crimson-editor-2.72-r286/cedt-286-

setup.exe/download 

After installation completion, set it up to recognize PML syntax by choosing Tools/Preferences/File � 

Syntax Type 

 



Just scroll down to -Empty- slot and enter:  

Description: PML 

Lang Spec: PDMS-PML.SPC 

Keywords: PDMS-PML.KEY 

 

GENERAL PML FEATURES 

  

 Macro (.mac) is nothing more than a sequence of commands stored inside a single file. It is 

started from within PDMS command window by typing:  

$M/%PATHNAME%\fixori.mac 

For example, if we have fixori.mac stored inside folder TEST on drive C: syntax would be:  

$M/C:\TEST\fixori.mac 

Nowadays preferred way of using PML is through Functions (.pmlfnc), objects (.pmlobj) and Forms 

(.pmlfrm) but they won’t be discussed here. 

 Variables in PML can be of any built in type: 

• STRING – any text  

• REAL – any numeric value (integer and non-integer) 

• ARRAY – contains many values of the same type  

• BOOLEAN – holds the values of logical expressions (TRUE or FALSE) 

There are also system-defined and user-defined variable types.  

All variable names beginning with ‘!’ are LOCAL (they can be used only from within one function or a 

macro) and variables beginning with ‘!!’ are GLOBAL which last until PDMS is closed. PML is not case 

sensitive so it doesn’t matter if the letters are UPPER or lower case. Give all your variables meaningful 

names; it will pay up in the long run.  

 

MACRO FOR FIXING EQUIPMENT ORIENTATION 

 

 It is important that at the end of equipment design all EQUI and SUBE elements have an 

orientation of Y is N and Z is U. Usually, this is not the case as mistakes are often made with improper 

use of model editor. Following macro fixes that problem without changing the position of equipment.  



-- FixOri v1.0 by Adnan Dervisevic 

First few lines of the code are comments. Simple inline comment can be made by starting a line with -- 

or $*. Comments that spread over multiple lines are enclosed between $( and $). 

$(  

This is a  

three line 

comment 

$) 

 

IF CONSTRUCT  

 

General form of an IF construct is :  

if (CONDITION is TRUE) then 

  (command block) 

elseif (CONDITION is TRUE) then 

  (command block) 

else 

  (command block) 

endif 

As soon as one of the conditions is TRUE, following command block is executed and everything else after 

that is ignored. If none of the conditions are TRUE, then command block after else is executed. Elseif 

and else are optional.  

Our IF construct checks if we are on correct level in hierarchy and displays an error if this is not the case: 

If (!!ce.type neq 'EQUI') then  

return error 1 'Please stand on EQUI level' 

endif 

 

COLLECTIONS AND EVALUATING 

 

var !subs collect all subequi for CE  

Collect all reference numbers of sub equipments for current element (macro is started from an EQUI 

level) and store them in array called subs. Collection is a very useful way of creating an array of certain 

type of elements which satisfy certain criteria. Its syntax is as follows:  

VAR !ArrayName COLLECT Class Selection criteria  

 



VAR is a PML1 way of creating variables. It will return an ARRAY with references to subequipment as 

STRING. Array members are referred to as !ArrayName[1] , !ArrayName[2] … etc 

 

Class determines what types of elements are to be collected. In our case, it is ALL SUBEQUIPMENT. 

 

Selection criteria is optional and it can be a logical expression, a physical volume (defined by the 

WITHIN keyword) or a hierarchy criteria (defined by FOR keyword - in our case only elements below 

current element are collected)  

 

var !SubPos eval position in world for all from !Subs 

Now we evaluate position for all elements from !Subs array .One new array is created, called !SubPos 

with positions of sub equipments relative to world. Read more about collections and evaluating in 

Software customization guide as they can be very useful.  

 

DO LOOPS 

 

 In PML there are no FOR, WHILE or REPEAT loops. They are all replaced by DO loop which has 

the following form:  

do !variable from X to Y by Z 

     . 

     . 

     . 

enddo 

!Variable, from, to and by are optional. If from is not given, the counter starts from 1 by default.  

In our macro, we will use the following loop:  

do !x index !Subs 

  . 

  . 

  do !y index !Elements 

    . 

    . 

  enddo 

enddo 

 This is the so-called nested loop. The inner loop goes through all the values of !y and then the 

outer loop moves to the next value of !x. You can see here that from, to and by have been replaced by 

index. It means that !x/!y will take the index values of arrays !Subs/!Elements from 1 to the maximum 

array index.  

For example, if array !Subs goes from !Subs[1] to !Subs[5], !x will take values from 1 to 5.  



Sometimes it is more convenient to use values instead of index. That way !x would take values of each 

array member from first to last.  

This nested loop has the following algorithm: 

• Make subequipment with index !x current element in hierarchy.  

!!CE = !Subs[!x].dbref() 

  Dbref() is a method that converts STRING type names of subs to DBREF type. This must be done, 

 otherwise the PDMS will report an error.  You can read about methods and objects in Software 

 Customization Reference Manual. 

• For each subequipment, collect all of it’s elements and evaluate their positions and orientations 

relative to world. 

• Store these positions and orientations in two dimensional arrays - !PosMatrix and !OriMatrix. 

This is what inner loop does.  

It is important to collect positions of subequipment and its elements before we do anything as these can 

sometimes change with orientation and we want the equipment to remain in the same position.  

 Now we can start fixing the orientation:  

EQUI 

Orientation Y is N and Z is U WRT/* 

These two lines take us back to equipment and set its orientation to Y is N and Z is U, relative to world.  

 Second nested do loop is similar to previous one but instead of collecting, we are now setting 

the orientations and old positions to each sub and its members.  

Interesting part here is the use of $ - escape character. Together with the character that follows it is 

treated as a special instruction to PML (escape sequence).   

Position $!subpos[$!x] WRT/* 

Orientation $!OriMatrix[$!x][$!y] WRT/* 

Position $!PosMatrix[$!x][$!y] WRT/* 

In case when variable is a part of some command or when you want to display it on a screen, you must 

put $ in front, otherwise PDMS will report an error. Some useful escape sequences are: 

$P outputs a message to a screen. $P Hello World!! 

$M is used to run macros and db listings. $M/C:\TEST\fixori.mac 

$Q after a command displays a list of all possible command attributes.  

 

 

 

 



CONCLUSION 

 

 This text covers only the very basics of PML. As I am still in the learning process of PML, errors 

are possible. Please send any comments and suggestions to my email: the.adnan@gmail.com 

 

 


