SHORT PML GUIDE

INTRODUCTION

PML (Programmable Macro Language) is an important aspect of PDMS. It can make life easier
for designers, drafters and administrators by automating some common tedious tasks, reviewing, etc.
The goal of this guide is to cover some basic principles of programming through an example macro that
fixes orientation of equipment in design module. For more information, | suggest reading the Software
Customization Guide and Software Customization Reference Manual, both supplied with PDMS.

At this moment, PML is in its second revision called PML2 which is an object oriented language
(well almost, but that is beyond the scope of this guide). It is an extension of original PML1 specifically
designed to handle forms & menus. Macro file that accompanies this guide mostly uses PML1 syntax, as
it is a good starting point for further learning.

GETTING STARTED

All you need to write PML code is a simple text editor. Notepad will do. However, | strongly
recommend using editor with syntax highlighting. Crimson Editor (now developed by Emerald Editor
community) is a good choice. You can download the latest version from
http://sourceforge.net/projects/emeraldeditor/files/crimsoneditor/crimson-editor-2.72-r286/cedt-286-

setup.exe/download

After installation completion, set it up to recognize PML syntax by choosing Tools/Preferences/File >
Syntax Type

Just scroll down to -Empty- slot and enter:

Description: PML
Lang Spec: PDMS-PML.SPC
Keywords: PDMS-PML.KEY

GENERAL PML FEATURES

Macro (.mac) is nothing more than a sequence of commands stored inside a single file. It is
started from within PDMS command window by typing:

SM/%$PATHNAME%\fixori.mac
For example, if we have fixori.mac stored inside folder TEST on drive C: syntax would be:
SM/C:\TEST\fixori.mac

Nowadays preferred way of using PML is through Functions (.pmlfnc), objects (.pmlobj) and Forms
(.pmlfrm) but they won’t be discussed here.

Variables in PML can be of any built in type:

e STRING — any text

e REAL - any numeric value (integer and non-integer)

e ARRAY — contains many values of the same type

¢ BOOLEAN - holds the values of logical expressions (TRUE or FALSE)

There are also system-defined and user-defined variable types.
All variable names beginning with ‘" are LOCAL (they can be used only from within one function or a
macro) and variables beginning with ‘!!" are GLOBAL which last until PDMS is closed. PML is not case
sensitive so it doesn’t matter if the letters are UPPER or lower case. Give all your variables meaningful

names; it will pay up in the long run.

MACRO FOR FIXING EQUIPMENT ORIENTATION

It is important that at the end of equipment design all EQUI and SUBE elements have an
orientation of Y is N and Z is U. Usually, this is not the case as mistakes are often made with improper
use of model editor. Following macro fixes that problem without changing the position of equipment.

—— FixOri v1.0 by Adnan Dervisevic

First few lines of the code are comments. Simple inline comment can be made by starting a line with --
or $*. Comments that spread over multiple lines are enclosed between $(and $).

$(

This is a
three line
comment

$)

IF CONSTRUCT

General form of an IF construct is :

if (CONDITION is TRUE) then
(command block)

elseif (CONDITION is TRUE) then
(command block)

else
(command block)

endif

As soon as one of the conditions is TRUE, following command block is executed and everything else after
that is ignored. If none of the conditions are TRUE, then command block after else is executed. Elseif
and else are optional.

Our IF construct checks if we are on correct level in hierarchy and displays an error if this is not the case:

If (!'ce.type neq '"EQUI') then
return error 1 'Please stand on EQUI level'
endif

COLLECTIONS AND EVALUATING

var !subs collect all subequi for CE

Collect all reference numbers of sub equipments for current element (macro is started from an EQUI
level) and store them in array called subs. Collection is a very useful way of creating an array of certain
type of elements which satisfy certain criteria. Its syntax is as follows:

VAR !ArrayName COLLECT Class Selection criteria

VAR is a PML1 way of creating variables. It will return an ARRAY with references to subequipment as
STRING. Array members are referred to as !ArrayName[1] , !ArrayName|[2] ... etc

Class determines what types of elements are to be collected. In our case, it is ALL SUBEQUIPMENT.

Selection criteria is optional and it can be a logical expression, a physical volume (defined by the
WITHIN keyword) or a hierarchy criteria (defined by FOR keyword - in our case only elements below
current element are collected)

var !SubPos eval position in world for all from !Subs

Now we evaluate position for all elements from !Subs array .One new array is created, called ISubPos
with positions of sub equipments relative to world. Read more about collections and evaluating in
Software customization guide as they can be very useful.

DO LOOPS

In PML there are no FOR, WHILE or REPEAT loops. They are all replaced by DO loop which has
the following form:

do !variable from X to Y by 2

enddo
IVariable, from, to and by are optional. If from is not given, the counter starts from 1 by default.
In our macro, we will use the following loop:

do !x index !Subs
do !y index !Elements

enddo
enddo

This is the so-called nested loop. The inner loop goes through all the values of ly and then the
outer loop moves to the next value of Ix. You can see here that from, to and by have been replaced by
index. It means that !x/ly will take the index values of arrays !Subs/!Elements from 1 to the maximum
array index.

For example, if array 1Subs goes from ISubs[1] to !Subs[5], !x will take values from 1 to 5.

Sometimes it is more convenient to use values instead of index. That way !x would take values of each
array member from first to last.

This nested loop has the following algorithm:
¢ Make subequipment with index !x current element in hierarchy.
''CE = !Subs[!x].dbref ()

Dbref() is a method that converts STRING type names of subs to DBREF type. This must be done,
otherwise the PDMS will report an error. You can read about methods and objects in Software
Customization Reference Manual.

® For each subequipment, collect all of it’s elements and evaluate their positions and orientations
relative to world.

e Store these positions and orientations in two dimensional arrays - IPosMatrix and 0riMatrix.
This is what inner loop does.

It is important to collect positions of subequipment and its elements before we do anything as these can
sometimes change with orientation and we want the equipment to remain in the same position.

Now we can start fixing the orientation:

EQUI
Orientation Y is N and Z is U WRT/*

These two lines take us back to equipment and set its orientation to Y is N and Z is U, relative to world.

Second nested do loop is similar to previous one but instead of collecting, we are now setting
the orientations and old positions to each sub and its members.

Interesting part here is the use of $ - escape character. Together with the character that follows it is
treated as a special instruction to PML (escape sequence).

Position $!subpos[$!x] WRT/*
Orientation $!OriMatrix[$!x][$!y] WRT/*
Position $!PosMatrix[$!x][S$!y] WRT/*

In case when variable is a part of some command or when you want to display it on a screen, you must
put $ in front, otherwise PDMS will report an error. Some useful escape sequences are:

SP outputs a message to a screen. $P Hello World!!
SM is used to run macros and db listings. SM/C:\TEST\fixori.mac
$Q after a command displays a list of all possible command attributes.

CONCLUSION

This text covers only the very basics of PML. As | am still in the learning process of PML, errors
are possible. Please send any comments and suggestions to my email: the.adnan@gmail.com

