
DDK Introduction - web version.doc 

Citect Pty Ltd                                                   - 1 -                                                   24/05/2005 

 
 
 
 
 
 
 
 
 

 
 

 
 

DRIVER DEVELOPMENT TOOLKIT 

VERSION 6.0 

INTRODUCTION 
 
 

This paper is intended for any CitectSCADA users interested in developing a driver for 
CitectSCADA using the driver development toolkit (DDK). 

 



DDK Introduction - web version.doc 

Citect Pty Ltd                                                   - 2 -                                                   24/05/2005 

Introduction 
The Citect Driver Development Kit (DDK) provides all the information you will need to write a 
device driver for a communication protocol.  It provides a common base of code that is used 
by all CitectSCADA drivers, and also includes examples of working drivers.  To build a driver 
you will also need a suitable C++ compiler and linker. 
 
Device drivers are used so that a single generic version of CitectSCADA can use any type of 
communication protocol.  Because device drivers communicate with the physical device, they 
provide CitectSCADA with the flexibility of communicating with any type of I/O Device.  
 
This DDK is aimed at developers developing drivers for CitectSCADA. Citect Ltd also 
recommends that you develop drivers on the latest released CitectSCADA version. By 
definition, CitectSCADA drivers are 32-bit drivers. This DDK should work with versions of 
CitectSCADA from version v5.50 onwards.  
 
Once you have written a CitectSCADA driver, you can add it to the CitectSCADA system and 
it will then be used in the same way as the drivers supplied with CitectSCADA.  Drivers are 
implemented as Windows DLLs (Dynamic Link Libraries). 
 
This manual assumes that you are familiar with basic programming techniques, and the ‘C’ or 
‘C++’ programming languages. 
 

System requirements 
The system requirements to allow you to develop CitectSCADA drivers include: 

 Windows XP / 2000 / Windows NT4.0  
 CitectSCADA V5.5 on 
 A suitable compiler. Citect Pty Ltd recommends and uses Microsoft Visual C/C++ Version 

6 to build CitectSCADA drivers. If you use a different product then you may have 
unforeseen compatibility problems, and we are unable to support you with the specifics of 
that compiler. 

 Editor for dBase III files (*.DBF). Applications which can edit DBF files include Microsoft 
Excel, Microsoft Access, FoxPro, Dbu.exe (utility included with DDK), dBase (III and 
above), etc. 

 

Before You Start 
It should take from three to six weeks to design and write a simple driver, depending on the 
complexity of the protocol, and how familiar you are with CitectSCADA.  
 
Before attempting to write a driver, you should: 

 Print the source code for the “skeleton” driver and example drivers supplied on the DDK 
CD-ROM.  

 Read all documentation (the tutorial, source files and this manual) thoroughly.  You 
should understand how CitectSCADA and the driver interact, the start-up sequence, 
running requests, the shutdown sequence, redundancy and error systems. 

 Try building one of the example drivers.   
 Experiment with the CitectSCADA Kernel “DriverTrace”, (see Appendix H) to get a feel for 

the commands sent to drivers. 
 



DDK Introduction - web version.doc 

Citect Pty Ltd                                                   - 3 -                                                   24/05/2005 

What’s Included With This DDK? 
The Driver Development Kit includes the following: 

 This manual. 
 Header and Library files required to build a CitectSCADA Driver. 
 A shell driver specification document. 
 A framework “skeleton” source code for a new driver. 
 A simple CitectSCADA Project for initial debugging. 
 Source code of example drivers. 
 A spreadsheet for calculating the blocking constant. 
 A full-release of the latest version of CitectSCADA. 
 A CitectSCADA protection key. This key will allow 8 hours run-time, which is sufficient 

for most testing purposes. This is only valid when a Professional Edition of the 
CitectSCADA DDK is purchased. 

 Several utilities to assist in the development, testing, and distribution of the drivers 
you develop. 

 12 months free Driver Development Support from date of purchase. Refer to the 
following section for more information. This is only valid when a Professional Edition 
of the CitectSCADA DDK is purchased. 

 
 



DDK Introduction - web version.doc 

Citect Pty Ltd                                                   - 4 -                                                   24/05/2005 

Manual Outline 
Following is a brief description about the content of each chapter in this DDK: 
 
1. Introduction This chapter explains the things you need to know before 

embarking on CitectSCADA driver development. 
2. Overview Discusses what a CitectSCADA driver is, and how it 

interacts with the CitectSCADA system. 
3. The CitectSCADA Compiler Discusses how the CitectSCADA compiler is used to check 

user configuration. 
4.Processing CitectSCADA requests Explains how a driver interacts with CitectSCADA, and how 

it manages requests. 
5. Data Formats Explains the common data formats used by CitectSCADA. 
6. Driver Parameters Explains the standard parameters that every CitectSCADA 

driver supports, plus how to define and use driver specific 
parameters. 

7. Error Handling Explains how to handle errors, including those returned by 
the device. 

8. Debug information & Statistics Details how to take advantage of CitectSCADA’s standard 
debugging and tracing facilities, and use it in a run-time 
system. 

9. Request blocking Explains how CitectSCADA’s performance improving 
mechanisms work. 

10. Building drivers Shows how to build a CitectSCADA driver using Microsoft 
VC++. 

11. Testing drivers Gives some tips and methods for performing testing of the 
driver. 

12. Data Structures Explains the common data structures employed by 
CitectSCADA. 

13. Utility functions Describes the function and use of the utility functions 
provided with the DDK. 

14. Serial communications functions Describes the function and use of the serial 
communications functions provided with the DDK. 

15. Queue functions Describes the function and use of the queue functions 
provided with the DDK. 

16. Timer functions Describes the function and use of the timer functions 
provided with the DDK. 

17. Database functions Describes the function and use of the database functions 
provided with the DDK. 

18. V Database functions Describes the function and use of the virtual database 
functions provided with the DDK. 

19. Hardware access functions Describes the function and use of the hardware access 
functions provided with the DDK. 

20. Software protection for drivers Highlights how to protect your drivers against illegal use.  
21. Driver development utilities Describes the function and use of the utilities provided with 

the DDK. 
Appendix A – Driver Commands Describes the commands sent to the driver by 

CitectSCADA for the driver to act on. 
Appendix B – Generic Errors Describes the Generic error code available to the driver. 
Appendix C – Driver Errors Describes the specific driver error codes available to the 

driver. 
Appendix D – FAQs Details a number of frequently asked questions and their 

answers. 
Appendix E – Example driver Provides tutorials on some example drivers. 
Appendix F – Superceded template 
  specifiers 

Describes the template specifiers that are superceded by 
this version of the DDK. 

Appendix G – Creating a Stand 
  Alone Driver Pack 

Provides step by step instructions for creating a setup 
program to install a single driver. 

 



DDK Introduction - web version.doc 

Citect Pty Ltd                                                   - 5 -                                                   24/05/2005 

Directory structure of installed DDK 
The DDK setup program installs a large directory tree of files and documents to help you build your 
CitectSCADA drivers. Please refer to the document – DDK Structure.pdf on the DDK CD-ROM for a 
complete description of the file contents. 
Note: Private build is the equivalent of the debug build. 
 Public build is the equivalent of the release build. 
 
\Citect\DDK 
├──\CtBin - Contains utilities required for building a driver. 
├──\CtLib - Contains libraries required by drivers.  
│ ├──\Private - Contains library files for Private builds. 
│ └──\Public - Contains library files for Public builds. 
├──\Doc - Contains documents and a basic test project. 
├──\Drivers - Contains driver source code. 
│ ├──\Protection - Contains driver protection source code. 
│ │ └──\res - Contains driver protection resources. 
│ ├──\Skeleton - Contains Skeleton driver source code. 
│ ├──\Modnet  - Contains Modnet driver source code. 
│ ├──\Tiway  - Contains Tiway driver source code. 
│ └──\Toshiba - Contains Toshiba driver source code. 
├──\Private - This is the Private (Debug) build area. This directory, and any of it’s sub-directories and files are created    
│ │   during a Private build, and they may be safely deleted. 
│ ├──\Drivers - This directory contains all the outputs of Private Driver builds. 
│ │ ├──\Skeleton - Outputs of the Skeleton Driver Private builds. 
│ │ └──\Protection - Outputs of the Protection Driver Private builds. 
│ ├──\obj - This directory contains the intermediate files of Private Driver builds. 
│ │ ├──\Drivers - This directory contains the intermediate files of Private Driver builds. 
│ │ │ ├──\Skeleton - Contains the intermediate files of the Skeleton Driver Private builds. 
│ │ │ └──\Protection - Contains the intermediate files of the Protection Driver Private builds. 
│ │ └──\Utilities - This directory contains the intermediate files of Utilities builds. 
│ │  └──\RegCentre - This directory contains the intermediate files of Registration Centre  
│ │        utility Private builds. 
│ ├──\setup - Used by internal driver developers. Third party developers may ignore this directory. 
│ │ └──\specfile  
│ └──\Utilities - This directory contains all the outputs of Utilities Private builds. 
│  └──\Regcentre - Contains outputs of Registration Centre Private builds. 
├──\Public - This is the Public (Release) build area. This directory, and any of it’s sub-directories and files are created    
│ │   during a Public build, and they may be safely deleted. The directory structure is same as Private build area  
│ │   except it contains output of Public builds. 
│ ├──\Drivers 
│ │ ├──\Skeleton 
│ │ └──\Protection 
│ ├──\obj 
│ │ ├──\Drivers 
│ │ │ ├──\Skeleton 
│ │ │ └──\Protection 
│ │ └──\Utilities 
│ │  └──\RegCentre 
│ ├──\setup 
│ │ └──\specfile 
│ └──\Utilities 
│  └──\Regcentre 
├──\Source - Contains common files required for building drivers. 
│ └──\Include - Contains common header files required for building drivers. 
└──\Utilities - Contains source code for Utilities program. 
 └──\Regcentre - Contains Registration Centre utility source code. 
  └──\res - Contains Registration Centre utility resources.  



DDK Introduction - web version.doc 

Citect Pty Ltd                                                   - 6 -                                                   24/05/2005 

Generating a CitectSCADA Driver 
When writing a driver, you should: 

 Read the protocol manuals provided with the device, so you know exactly how the 
protocol works. 

 Write a specification for the driver. A blank specification document (in Word 97 format) is 
provided with the DDK. 

 Define the driver and its data format(s) in the compiler specification databases. These 
databases define how CitectSCADA works with the new driver. 

 Use the skeleton (provided on the DDK CD-ROM) or an existing driver as a basis for the 
new driver.  Write the code according to your driver specification. 

 Debug the driver.  Start with a simple test project—to get the first communications.  
Extend the project to test and debug data formatting, operation with larger block sizes, 
robust operation, etc. 

 Update your documentation, and generate user documentation. 
 Test the driver against your user documentation. Test all the types, data formats, address 

ranges etc.  
 
 



DDK Introduction - web version.doc 

Citect Pty Ltd                                                   - 7 -                                                   24/05/2005 

Glossary 
The following are terms and abbreviations that are used in this manual or in the Automation 
industry in general: 
 
API Application Programming Interface 
DCS Distributed Control System. 
DDK Driver Development Kit 
Driver A software component that abstracts communications with a 

specific device. 
IED Intelligent Electronic Device 
IEEE Institute of Electrical and Electronic Engineers 
ISO International Organisation for Standardisation 
LAN Local Area Networks 
OLE Object Linking and Embedding 
OPC OLE for Process Control 
OSI Open Systems Interconnection 
PLC Programmable Logic Controller 
Protocol A well-defined method of communication between 

CitectSCADA and a device. It does not always define a 
physical communications media. 

PSTN Public Switch Telephone Network 
RBE Report By Exception. A report generated by the device on 

the occurrence of some event. The report usually includes 
data. 

RS232 International standard for serial communications protocols. 
Two unbalanced data lines, with only one receiver per line. 
Allows full duplex serial communication between two points. 

RS422 International standard for serial communications protocols. 
Two balanced data lines, with only one transmitter and up to 
ten receivers per line. Either allows simplex serial 
communications between one central point and up to ten 
other points, or full duplex serial communication between two 
points. 

RS485 International standard for serial communications protocols. 
Two balanced data lines, with up to 32 transmitters and up to 
32 receivers per line.  

RTU Remote Telemetry Unit 
SCADA Supervisory Control And Data Acquisition  
SOE Sequence of Events. A log of chronologically ordered list of 

time-stamped events that are normally held by the device for 
interrogation, storage and display by a SCADA system. 

TCP/IP Transmission Control Protocol / Internet Protocol 
UDP/IP User Datagram Protocol / Internet Protocol 
Unsolicited messages.  Messages sent by the Slave (or Server) that are not triggered 

by a request from the Master (or Client). 
WAN Wide Area Networks 


