

Revision History

Date Name Comments

5/17/2006 Eric Black Started 1
st
 draft

7/21/2006 Eric Black Added Tim Van Wyk’s comments; expanded coupling section

11/1/2006 Eric Black 2
nd

 Draft

11/3/2006 Eric Black 3
rd

 Draft. Modified control blocks, documentation

4/10/2013 Eric Black Updated for Citect v7.0 – 7.3. Added Performance section.

CitectSCADA / Vijeo Citect

Cicode Programming

Guidelines

Cicode Programming Guidelines

4/11/2013 Page 2

Table Of Contents

Structure .. 3

Naming .. 5

Declarations .. 6

Documentation .. 7

Loose vs Tight Coupling ... 9

Performance .. 11

Macro Functions and Include Files ... 13

Constants ... 14

Decision Control Blocks ... 14

Paths and Filenames .. 15

Scope ... 15

Semaphores ... 15

Error Checking & Reporting ... 15

Expressions ... 16

Dead Code ... 16

Resource Leaks ... 16

References ... 17

Cicode Programming Guidelines

4/11/2013 Page 3

Introduction

When writing code, the immediate goal is to ‘make it work’. However, the way code is written

significantly affects how easily it can be debugged, modified, understood, reused, and how efficient it is.

The purpose of this document is to provide guidelines to help find a balance between those goals. Of

course, the programmer has to use their own judgment as well, based on project requirements and

special circumstances.

The Cicode language is used in the code snippets, but the principles can be adapted to other languages as

well.

Structure

Whitespace

Add white space (spaces, tabs, new lines) to code to make it easier to read. This makes functions and

blocks of code stand out. Use tabs instead of spaces if possible, and leave the tab width at the default of

4 spaces. Indent nested statements by one tab for each level of nesting. Add two blank lines between

functions.

Add one blank line before each block of code within a function. Blocks may be defined by block

statements such as IF THEN and SELECT CASE or just a group of related statements. Put a space after

commas and before and after operators (+ - / *) etc. Do not put spaces between parentheses or brackets,

or after a function name.

CreateFoo (sChar,0,1); Poor
CreateFoo(sChar, 0, 1); Better

Functions

Functions should be declared on multiple lines. All statements and declarations in a function should be

indented. If the arguments list is too long, it should be wrapped to multiple lines at logical points, with

each line indented.

PRIVATE
STRING
FUNCTION
GetName(INT nUser)
 <variable declarations>

 <statements>
END

OR…

PRIVATE STRING FUNCTION GetName(INT nUser)
 <variable declarations>

 <statements>
END

Cicode Programming Guidelines

4/11/2013 Page 4

INT FUNCTION PLUSAESum_FileAddEntry(STRING sTime = "", STRING sTimeMS = "",

 INT nActive = -1, INT nType = -1, STRING sName = "",

 STRING sDesc1 = "", STRING sDesc2 = "",

 STRING sCustom1 = "", STRING sCustom2 = "",

 STRING sCustom3 = "", STRING sCustom4 = "")

If a few functions are very similar and only have one or two commands, it may make them easier to

compare if they are each on a single line.

//Get and set the current status string
STRING FUNCTION GetStatus() RETURN msStatus; END

 FUNCTION SetStatus(STRING sStatus) msStatus = sStatus; END

Block Statements

Statements like IF THEN and SELECT CASE should not be condensed to one line. An exception is

when there is a group of similar, short block statements and their purpose is clearer if each is on one

line. CASE and ELSE statements should be at the same indentation level as the SELECT or IF

statement. Blocks of statements should be indented one tab stop.

SELCT CASE nMonth
CASE 1
 RETURN "January";
CASE 2
 …
END SELECT

ELSE IF statements are not supported in Cicode. Although they can be simulated by changing the

whitespace, this should be avoided because it causes multiple end statements with no

indenting…making the code less readable.

IF (Foo = 1) THEN
 Bar();
ELSE IF (Foo = 2) THEN Poor
 Baz();
END
END

IF (Foo = 1) THEN
 Bar();
ELSE
 IF (Foo = 2) THEN Better
 Baz();
 END

END

Multiple statements should not be combined on one line.

Line Continuation

Lines should not exceed about 100 characters because code is much harder to read if the user has to

scroll back and forth. If a statement spans multiple lines, they should be indented. Splits in an expression

should be before the operator.

Expr = Value1 + Value2 + Value3 + Value4 + Value5

 + Value 6 + Value7 + Value8;

Scope

Declarations of items with different scope should not be mixed together. First declare global variables,

then module variables, public functions, and finally private functions.

Cicode Programming Guidelines

4/11/2013 Page 5

Naming

Names serve as automatic documentation. Use names that explain what the item is, does, or what units it

uses. Avoid names like fn, n1, val, x, etc. Try to use full words instead of abbreviations. Although

shortened names may be faster to type, they’re harder to read and can be misinterpreted. A few

abbreviations may be used if they’re frequently used and documented.

Names should be consistent. If the LotNumber field is read from a database, it should be stored in

variables like iLotNumber or sLotNumber, not iLotNo, iLotNum, or iBatchNumber.

Capitalization

For variables, use Pascal case (mixed case with the first letter of each word capitalized). The data type

prefix should be lower case. Underscores are not needed between words. If a name contains acronyms,

only the first letter should be capitalized so it is easy to see where the next word begins.

iMixProcessStartTimeSeconds;

sHtmlCode;

Label constants defined in the Project Editor | System menu | Labels should be all capitals with

underscores to separate the words.

DATA_FORMAT_TIME

Cicode pseudo-constants use Pascal case with a c prefix. The programmer is expected to refrain from

writing to these variables since Citect does not enforce it.

INT cLogFile = "log.txt";

Files

Cicode functions should be grouped into separate files based on their general purpose or relation to one

another.

Standard naming of Cicode files should be defined and followed, based on project requirements. The

filename should describe the general purpose of the functions, and may be prefixed with the project

abbreviation like ‘SEW_Navigation.ci’.

Any Professional Services Plus Cicode files should be prefixed with ‘Plus_’.

Variables

Try to avoid using the same generic variables for storing all temporary values (e.g. sTemp). Instead,

create a separate variable for each instance. This makes it easier to read the code and see what the

purpose of the variable is.

Cicode variables should have a one-letter prefix to indicate the type. This is not necessarily the data

type. For example ’h’ indicates ‘handle’, but a database handle is an integer, an ActiveX object handle is

an object, and some handles may be strings.

Cicode Programming Guidelines

4/11/2013 Page 6

Type Prefix Used For

any c pseudo-constants

INT n or i integer value, count

INT OBJECT STRING h handle to a resource or ActiveX object

STRING s text

REAL r floating-point value

TIMESTAMP t tag timestamp

QUALITY q tag quality

Do not use the exact same names for local, module, global variables, and variable tags. Although legal,

it leads to confusion and bugs. Module and global variables should have an additional prefix (‘m’ or ‘g’)

before the type prefix. Local variable names can be shorter because they only apply to a single function

so part of their purpose is defined by the function’s purpose. Module and global variables need more

structured names so they don’t conflict and their purpose is clear.

Functions

Function names should clearly indicate their purpose within their scope. A private function name can be

shorter since it is known to only support the other functions in the same file. Public functions that are

specific to a customer’s project may be prefixed with the accepted abbreviation for that project or

customer such as ‘PGE_’. If a function is generic enough to be used with other projects it may be

prefixed with ‘Plus_’ to associate it with the Professional Services Plus functions.

Declarations

Variables

Only one variable should be declared on each line to improve readability. If multiple declarations are

listed together the names should be indented the same amount.

STRING mcTitle = "Monthly Report";
STRING mcDescription = "Pump status";
STRING msHeaders[2][50]; // header table [rows][cols]

INT miHeaderCount;

Global and module variables should be declared at the top of the file, before any functions. Local

variables should be declared at the beginning of the function, before any statements. It is not necessary

to specify MODULE or LOCAL when declaring these variables.

Initial values may be specified in the declaration. If a statement will write to the variable before it is read

by any other statements, there is no need to set an initial value. However, if it will be read before any

statements write to it, the initial value should be declared, even if it is 0. The initial value may be a value

returned from a function, but it should not be a function that executes an action.

INT iResult = 0;

WHILE (iResult <> -1) DO
 iResult = Foo();
END

Cicode Programming Guidelines

4/11/2013 Page 7

INT nStartTime = TimeCurrent(); OK
INT nDevError = DevOpen(“LogDevice”, 0); Poor

Functions

Public functions do not need to be labeled PUBLIC since it’s the default.

In Cicode, the compiler may miss some syntax errors and as the code is modified odd errors may appear.

To avoid this, follow these rules:

1. The END keyword must not be omitted from function declarations.

2. Every statement that doesn’t end with a keyword (THEN, DO, END, END SELECT, etc.) must

end with a semicolon. Exceptions are function declarations and the beginning of a SELECT

CASE statement, and CASE statements.

STRING FUNCTION QueGetElement(INT hQue, INT nElement, INT nType = 2) No Semicolon
 STRING sValue;
 STRING sReturn;

 QuePeek(hQue, nElement, sValue, mcQueGetElement);

 SELECT CASE nType No Semicolon
 CASE 1 No Semicolon
 sReturn = nElement;
 CASE 2 No Semicolon
 sReturn = sValue;
 CASE ELSE No Semicolon
 sReturn = "";
 END SELECT No Semicolon

 RETURN sReturn;
END No Semicolon

Documentation

Comments are important. A function or variable’s purpose may be clear to the author but another

programmer may have to spend significant time reading the code to understand it. Also, people with

minimal programming or project knowledge may need to modify the code in the future.

Comments are only useful if they’re accurate. They should be in English with reasonably correct

spelling and grammar. They should also be brief. Longer comments are less likely to get updated as the

code is changed.

Good comments don't repeat the code or explain it. They clarify its intent. If the purpose of a line of

code is unclear it generally should be rewritten. However, sometimes performance is more critical and it

may be necessary to clarify the statement or function with a comment.

Single and multi-line comments

Common Cicode practice is to use ‘//’ for inline, single, or multi-line comments and ‘!’ for temporarily

disabled lines of code (even though both methods work identically).

The ‘/* … */’ block comment method should be avoided. Although it allows many lines of comments

with no prefix on each line, it is harder to distinguish comments from surrounding code, and long

comments will not be recognized by the Cicode Editor (See [CtCicode]MLCommentThreshold

parameter). The Comment and Uncomment buttons on the format toolbar make it easy to make multiple

lines of text or code into a comment using the // method.

Cicode Programming Guidelines

4/11/2013 Page 8

Comments should not have closing characters at the end of each line. It only looks neat until someone

tries to edit the text.

///
// MY COMMENT BLOCK /
// /
// This is an example of a comment block that’s /
// almost impossible to maintain. Don't do it !!! /
///

Files

Files should begin with a comment listing the copyright, filename, and purpose.

// Copyright (C) 2013 Schneider Electric
//
// PLUSXml.ci

// Functions for reading/writing XML files

Functions

Functions should begin with a header explaining the purpose and use of the function and return value.

//Stores data to display in a report
//
//Modified: 5/17/06 Joe White Fixed time value rounding bug
//
//Arguments:
//
//nRow Row to set (1 to 300)
//nColumn Column to set (1 to 50)
//rValue Value to store (may be LONG, REAL, Boolean, or Citect time/date)
//
//Returns: 0 if successful, otherwise a Cicode error number.
//
//Note: Although function accepts a REAL, local REALS are 64 bit so it can
//hold a long integer value without losing precision
//
INT FUNCTION MWS_HtmlSetData(INT nRow, INT nColumn, REAL rValue)

It is not necessary to repeat the function name in the comment unless it is so long that the function

declaration is off the screen. When headers are copied and pasted onto other functions people often

forget to change the function name, causing confusion.

If certain sections of the standard header don’t apply, delete them. Arguments don’t need to be

documented if they’re self-explanatory and there are no special cases. If a valid range applies, it should

be listed, though.

If a function is only called from a specific location, it may be added to the header.

//Note: Called automatically when the user tries to close the page

// (see Page Environment Variable: CloseWindow)

Pseudocode

Pseudocode is a simplified, high-level description of code. It is meant to be less precise and detailed

than the actual code but more structured and precise than the function’s description. It may be helpful to

include pseudocode in the function header if the code is executing a complex algorithm. However, when

the code is modified the pseudocode is often left unchanged, causing more confusion than good. If code

is written clearly, with occasional comments, pseudocode is not normally necessary.

//function quicksort('array')

Cicode Programming Guidelines

4/11/2013 Page 9

// if length('array') ≤ 1
// return 'array' // an array of zero or one elements is already sorted
// select and remove a pivot value 'pivot' from 'array'
// create empty lists 'less' and 'greater'
// for each 'x' in 'array'
// if 'x' ≤ 'pivot' then append 'x' to 'less' else append 'x' to 'greater'

// return concatenate(quicksort('less'), 'pivot', quicksort('greater')) //recursive

Variables

Variable declarations should be followed by an inline comment if necessary. A descriptive variable

name can eliminate the need for a comment in many cases.

Statements

Block statements do not need a comment at the end that restates the original expression because it can

lead to incorrect comments if the statements are modified and the comments are not updated. If the

expression being evaluated is unclear, an inline comment may be added after the expression.

If there are so many lines of code or nested block statements that it is hard to tell what the END

statement refers to, it may be better to move some of the code to separate functions.

IF (Foo = TRUE) THEN // The Foo process is running
 Bar();

END //IF (Foo = TRUE) Poor

To Do

If more is required at a later time to complete a piece of code, it can be marked with one of the following

codes and a description:

// TBD To be determined. Once a decision is made code changes may be needed

// TODO To be completed

// NOTE Something noteworthy in the code which may need attention later or may need to

be documented

// XREF

<location of

duplicate>

When a function or structure is duplicated in another file for whatever reason, a

maintenance flag needs to be placed in both code locations. This will ensure when

one copy is changed, the other copy is updated.

Consistent use of these codes allows text searches to turn up any code that needs to be reviewed before

completing a project.

Loose vs. Tight Coupling

The idea of coupling refers to the connection between different functions or systems. The type of

coupling affects performance and the ease of making changes without affecting related functions. This is

not a black and white matter where one method is good and one is bad or one is loose and the other is

tight. There are many degrees of coupling and the following table gives examples comparing looser and

tighter methods.

Looser Coupling Tighter Coupling

Cicode Programming Guidelines

4/11/2013 Page 10

Looser Coupling Tighter Coupling

Functions store data in local

variables or their own arrays and

pass data using arguments and

return values.

Functions share data in module or global variables and arrays.

Each function performs a specific

task.

One function determines what task another function will

perform by passing flags.

Simple data is passed from one

function to another.

Complex data is passed from one function to another, like

packing multiple bits into an integer or multiple values into a

string.

All programming is done in Cicode. External code is called via DLLs, ActiveX, DOS commands, etc.,

adding project dependencies.

Standard, documented API calls are

used.

Custom DLL functions are used or undocumented API calls.

These may be easier or perform better, but may be broken if

software or hardware is upgraded.

Interaction with other software is

kept to a minimum.

Code depends on 3
rd

 party software such as OPC servers, ActiveX

objects, Message Queueing, IIS, SQL Server, etc. Corrupt or

missing installations or installing different versions may break

the Citect project.

Some function arguments are

optional and have default values.

Function arguments are all required.

Multiple small functions carry out

individual tasks

A few large functions carry out multiple related tasks.

Functions pass data through

intermediate functions to interact

with the user, databases, printers,

APIs, etc.

Functions directly access the data source/destination.

Loose coupling means that one function doesn’t have to be concerned about the internal implementation

of another. A change in one function will require few changes in the other functions that use it. Loose

coupling is a sign of a well-structured system. Individual functions make sense without studying all

related functions, and they can stand alone. This makes the code easier to understand, maintain, and re-

use in other projects. If certain code is constantly changing, it should be loosely coupled with other code.

However, the level of coupling will vary depending on project requirements, such as high

performance—which may require tighter coupling. Functions in one file may be more tightly coupled

with one-another, but loosely coupled with functions in other files.

For example, in one project data needed to be gathered from dozens of similar groups (stations) and

formatted into several HTML reports. Originally, one long function was written to gather all the data,

saving it in arrays, and another long function converted it to HTML format and created the report files.

This tight-coupling was efficient, but hard to modify and debug. When more stations were added, the

data-gathering function had to be rewritten. When an additional report was needed, both functions had to

be duplicated with different names and arrays.

Loose coupling was applied in several ways:

1. The functions were rewritten as multiple loosely-coupled functions in two files. One file

contained functions to gather data and the other formatted data into HTML code.

Cicode Programming Guidelines

4/11/2013 Page 11

2. Instead of both functions accessing the same arrays, they were modified to each store their own

data. After data was gathered, it was passed to a function in the other file. This function checked

for errors, changed the format, and stored it in another array. Changes to the way data is gathered

no longer affect the functions creating the HTML.

3. Instead of hard-coding the list of stations and their configurations into a function, they were

moved to a database. A set of functions were created to present the station list to the data-

gathering code. This loose coupling means the station list could be moved from its DBF file to a

SQL Database or some other format and only the presentation function would be affected, while

the data-gathering and HTML functions would be unaffected.

4. Pseudo-constants and intermediate variables were used to replace ‘magic’ numbers and long

expressions, making the code much more readable and self-documenting.

5. Instead of one function taking the data and formatting it directly into HTML code, multiple

layers of functions were used (see chart). Each was loosely connected to the others by passing

simple values or counters.

 Function Layer

1 Functions aware of the entire report

2 Functions aware of individual sections

3 Functions aware of individual lines

4 Functions aware of individual values

Although this added many functions, it made debugging easier because each function had a well-defined

role so it was easy to find the source of problems. All the additional function calls and passing of

variables did have a small performance impact, but it was found to be insignificant compared to the

benefits.

Performance

Most user Cicode executes quickly and development time can easily be wasted trying to optimize code

that has no noticeable impact on the runtime. However some operations can severely impact the entire

runtime process and should be considered. Take into account not only how long the code takes to

execute but how often it will run and on which runtime process.

To monitor CPU usage of Cicode tasks, open the Citect Kernel in the runtime (DspKernel() Cicode

command) and type ‘PAGE TABLE CICODE <Enter>’ in the Main window. If a task has a high

CPU%, it may need to be optimized. Note that operations that hang the runtime while executing may not

show as using much CPU—see below for examples.

Infinite Loops

WHILE and FOR loops are often used for processing large groups of values, and WHILE loops may be

used to make a function run in an infinite loop in the background. Citect will execute the loop as quickly

as possible, and will interrupt (preempt) it as required so other tasks can execute. However, the loop can

consume all unused CPU time and make the runtime seem sluggish. Decide whether the loop needs to

execute as fast as possible. If not, add the Sleep() or SleepMS() command before the end of the loop so

it only executes as fast as needed.

Cicode Programming Guidelines

4/11/2013 Page 12

SQL Queries

SQL queries that take a long time to execute or that return large recordsets will hang the runtime process

until they complete. It will also hang temporarily if the SQL server is on another computer that is not

currently running or connected to the network. This problem is fixed with the ADO.NET support in

Citect 7.30. In 7.20 and older versions the problem can be improved by optimizing the query to run

faster, such as by adding indexes to the related tables or saving the query in the database as a stored

procedure. If a large amount of data is being returned, try limiting the number of records with the

WHERE or TOP query commands. Only request the fields that are needed. Or, try executing the query

from another process such as the Report server. See the Startup Functions Setup page in the Computer

Setup Wizard and the ServerRPC() Cicode function (Citect 7.20 and above) to run code in other

processes.

DLL Calls

It is preferable to use a built in command instead of using a DLL or ActiveX object if possible, for

performance and reliability. DLL and ActiveX calls will hang the Citect process until they return. They

can also crash the runtime.

If a DLL function or ActiveX method is called multiple times, the handle can be saved in a module

variable to improve performance. The variable name should reflect the name of the function/method.

INT hMakeSureDirectoryPathExists = -1;

INT FUNCTION CreatePath(STRING sPath)
 sPath = PathToStr(sPath);

 IF (hMakeSureDirectoryPathExists = -1) THEN
 hMakeSureDirectoryPathExists = DLLOpen("dbghelp.dll",
 "MakeSureDirectoryPathExists", "AC");
 END

 RETURN DLLCallEx(hMakeSureDirectoryPathExists, sPath);

END

The DLL/object may provide asynchronous methods to execute commands that take a long time to

complete. Another option is to run Citect in multiprocess mode (enabled in the Computer Setup

Wizard), and run the offending code in a less critical process, like the Report server. See the Startup

Functions Setup page in the Computer Setup Wizard and the ServerRPC() Cicode function (Citect 7.20

and above) to run code in other processes.

File Access

File access is much slower than memory access. If the same data will be needed often and it is not

changing, it may be better to read it once and store it in Cicode arrays or queues—see the QueOpen()

function.

Trying to read, write, or log to a file on another PC which is not connected to the network can cause the

runtime process to hang temporarily. It is best if server processes only log to local files. For example, if

the primary and standby Citect servers both log alarms to a file server which has failed, both Citect

servers will hang for 30 seconds each time they try to log.

If custom Cicode is constantly writing to files, it can be modified to check for errors and stop trying to

write to that file for several minutes to minimize the effect on the runtime. Or, log to a local file and use

the FileCopy() function to copy the file to the network location only when needed, so the hang happens

Cicode Programming Guidelines

4/11/2013 Page 13

less often. See also the Citect Toolbox item Q1087 CitectSCADA Plus Tools which provides some

asynchronous file functions.

Code Tricks

It may seem more efficient to do a complex set of operations in a single long command or to use

multiple logic operators instead of nested IF statement blocks. However, the performance increase is

likely very little and the code may become much harder to understand and maintain.

A programmer may also find unintended ways to use functions or operators that seem to be more

efficient than the normal, documented methods. However, unintended, undocumented functionality can

easily be broken by product upgrades or service packs.

String Handling

String manipulation is normally slower than numeric operations. Storing numeric values in strings may

be easier at times, but may mean doing string searches or multiple string-to-numeric or numeric-to-

string conversions if the value needs to be modified or formatted.

Reading and writing individual characters in a string with StrGetChar() and StrSetChar() may be more

efficient than some normal string operations, but normal string operations tend to be much easier to use

and require less code to be written. StrGetChar() and StrSetChar() should be reserved for processing

buffer values that may contain null characters.

Consider how often the code will run. If it will only run a few times a day (even a few hundred times)

and it is easier to work with strings, it may have no impact on the runtime. However, if the code is a

low-level function such as formatting a value, it may be called thousands of times in a row such as when

processing records from a large database, and could have more impact on the runtime. Functions called

from expressions on a graphic page (foreground Cicode tasks) should also be efficient because they may

be called hundreds of times a second if there are many objects calling the function.

INI Parameters

Cicode functions often need to read Citect.ini parameters using ParameterGet(). This is very quick for a

single read, but can become a problem with many Cicode tasks reading many parameters, or reading

them often in a loop. This is even more of a consideration if the hard drive is already busy, such as on a

trend server.

One way to avoid this is to read the parameter value once and store it in a global or module Cicode

variable. However, to better support online changes it can be good to be able to change parameter values

during the runtime. See the Citect Toolbox item Q1347 Citect.ini Parameter Buffer for a function that

stores parameter values in memory and only re-reads them from disk after a timeout.

Macro Functions and Include Files

Creating macro (label) functions should be avoided if possible. They are hard to debug since the source

code is not shown in the Cicode editor. They make the code less portable to other projects since macros

have to be copied from labels.dbf. Macros also cannot be called from the Kernel, MsgRPC(), or

TaskNew(). Macro functions are appropriate for doing things that cannot be done in Cicode such as

writing back to function arguments.

Include (.cii) files should be avoided if possible for similar reasons. A Cicode function can usually

replace an include file that contains Cicode commands. However, there may be no other option when the

include file contains data that won’t fit in a certain field, such as the format of a Citect System Device.

http://www.citect-kb.schneider-electric.com/toolbox/article.aspx?id=1087
http://www.citect-kb.schneider-electric.com/toolbox/article.aspx?id=1347

Cicode Programming Guidelines

4/11/2013 Page 14

Constants

Constants (Labels) or pseudo-constants (Cicode variables) should be used to make code more readable,

to reduce typing errors, and to make modification easier.

Passing ‘magic’ numbers to a function makes it hard to tell what the call is doing since you have to look

up the values in the documentation.

hPen = _ObjectCallMethod(hPens, "Create", 4097, 3); Unclear

Using pseudo-constants means more typing but the code is more readable.

INT cPaPenTypeAnalog = 4097;
INT cPaPenNameModeCustom = 3;
STRING cCreatePenMethod = “Create”;

hPen = _ObjectCallMethod(hPens, cCreatePenMethod, cPaPenTypeAnalog, cPaPenNameModeCustom);

If the constant name is mistyped, the compiler will report it. But, if a ‘magic’ number or hard-coded text

string is mistyped the mistake will be harder to find.

Constants may be saved in Labels (Project Editor | System menu | Labels), but this makes it harder to

see the value when debugging. It also makes the code less portable to other projects because the

constants have to be copied from labels.dbf along with the Cicode. Also, all labels are in one flat list—

they are not grouped for organization.

It is preferable to use Cicode variables as pseudo-constants. They can be assigned an initial value, or it

can be set by a startup function. They should never be written to after initialization. Pseudo-constants

may be defined as local variables if they are only needed in one function, but if they are used in multiple

functions they should be module or global variables to avoid duplicate definitions.

Decision Control Blocks

Nesting

IF, WHILE, SELECT CASE, and FOR blocks can be nested inside of one another. Try to avoid many

levels of nesting as it makes the procedure harder to follow.

Calling a separate function instead of creating a nested loop also allows breaking out of the loop early to

avoid unnecessary processing using the RETURN statement.

IF Statements

It is easier to follow the logic if the expression is checking for the expected result. The unexpected

results could be handled later by the ELSE statement.

IF (DevEof(hDev)) THEN
 // Do nothing
ELSE
 ProcessRecord();
END

IF (DevEof(hDev) = FALSE) THEN More readable
 ProcessRecord();

END

Cicode Programming Guidelines

4/11/2013 Page 15

Select Case

The SELECT CASE block can sometimes replace multiple nested IF statements, making the logic more

readable. Always use CASE ELSE as the final case to check for invalid values, even if they are not

expected. An error should be logged or displayed. Keep the actions of each case simple—calling other

functions if complex handling is needed.

Paths and Filenames

Use pseudo-constants to store paths and filenames instead of hard-coding them each time they’re used.

For commonly referred-to paths, use Citect path substitution. Any general use function that accepts a

path as an argument should use PathToStr() to ensure path substitution is handled.

Scope

Variables

Use the smallest scope you can. It is better to pass a local variable’s value from one function to another

than to have multiple functions using a module or global variable. Multiple functions writing to the same

variable make it more difficult to debug when an incorrect value is written.

Functions

Functions that only support other functions in the same file should be declared as private. This reduces

naming conflicts and the need for long, structured names. It also reduces errors since functions that are

only meant to be supporting functions can’t be called from outside of that file. Note that functions called

by TaskNew() or a form callback must be public. In that case the private label can be used to indicate

the intent, but must be commented out.

// PRIVATE

INT FUNCTION OKButtonCallback()

Semaphores

Use semaphores whenever a function uses shared data or a resource that won’t allow simultaneous

access, like DLL calls. Specify in the comments if semaphores should be used around calls to a set of

functions. See the EnterCriticalSection() and Semxxx() functions.

Error Checking & Reporting

Cicode threads should normally begin by calling ErrSet(1). This disables Citect’s automatic error

checking (and task termination) and allows the code to check the return values of functions for fatal

errors. For example the code doesn’t call ErrSet(1) and a function call like DevOpen() fails, Citect will

terminate the task before the code can check the return value. Disabling automatic error checking is vital

for functions that run in an infinite loop, so that they don’t get terminated. Do not disable automatic

error checking if the code does not check for errors.

Check DLL calls for errors using the IsError() function.

Return error codes from functions even if they’re not currently used by the calling function. They are

useful for debugging.

Non-interactive error messages should be logged—see the ErrLog() function. A common format is:

‘<function name>(<argument values>): <error message> Error <error code>’. For private functions that

Cicode Programming Guidelines

4/11/2013 Page 16

may have duplicated names, use ‘<filename>.<function name>(<argument values>): <error message>

Error <error code>’

Note that excessive error logging will slow down the runtime. If Cicode will constantly be logging

messages, consider using DebugMsg() and DebugMsgSet() to enable/disable logging as needed. Or, use

a custom logging function like Citect Toolbox item Q1348 ErrLogEx() that allows different levels of

logging to be enabled/disabled in the runtime.

User error messages may be displayed in a popup message box (Message() function). Use the correct

icon to indicate the severity (information, warning, or critical stop). The error message and error

number, if applicable, should both be displayed in the message.

Expressions

Integer variables may be used to store Boolean (digital) values. When using these in expressions, it is

more readable to write an inequality expression instead of using the ‘NOT’ operator.

IF NOT bFoo THEN

IF bFoo = FALSE THEN More readable

If multiple operations are combined in one expression, each operation should be enclosed in parentheses

to improve readability and avoid order of operations problems.

IF (nMode = 1) OR (bIgnoreMode = TRUE) THEN

Use parentheses around ‘is equal’ statements like: a = (b = c)

A long, complex expression may work efficiently and only take one line of code, but it can be hard to

read and debug. Use multiple lines with different local variables to store intermediate values. The

intermediate variable names automatically document what each part of the calculation is doing,

eliminating manual documentation. This also makes it clear which part of the expression is causing an

unexpected result when debugging.

Long expression requires extra documentation for clarity
iOutChar = StrToChar(StrMid(sData, nChar, 1)) BITXOR StrToChar(StrMid(sKey, nChar MOD iKeyLength, 1));

Separate expressions are easier to read and self-documenting
iInChar = StrToChar(StrMid(sData, nChar, 1));
iKeyChar = StrToChar(StrMid(sKey, nChar MOD iKeyLength, 1));
iOutChar = iInChar BITXOR iKeyChar;

Dead Code

Remove unused code unless it is necessary for future testing. This may include code that is executed but

no longer needed, obsolete functions, old or test versions of functions, and commented-out lines of code.

This makes the code easier to read and makes it easier to find the correct functions. If it may be

necessary to refer to an old version of a function, this should be available from project backups or

version control software.

Resource Leaks

Close databases, devices, and other handles when finished with them unless there is a performance or

resource issue with re-opening them. If a database is accessed often, it should be left open with a global

or module handle. Be careful not to re-open a resource that is already open unless the function

specifically states that it will return the existing handle.

http://www.citect-kb.schneider-electric.com/toolbox/article.aspx?id=1348

Cicode Programming Guidelines

4/11/2013 Page 17

References

Source Code http://en.wikipedia.org/wiki/Category:Source_code

Coupling: http://www.phptr.com/articles/article.asp?p=349749&seqNum=5&rl=1

http://en.wikipedia.org/wiki/Coupling_%28computer_science%29

Cohesion http://en.wikipedia.org/wiki/Cohesion_%28computer_science%29

Comments http://en.wikipedia.org/wiki/Comment

Hungarian

Notation:

http://en.wikipedia.org/wiki/Hungarian_notation

Standards: http://ei.cs.vt.edu/~cs2604/Standards/Standards.html

VB Style: http://www.htservices.com/Tools/VBandC/VB6Guidelines.doc

Unmaintainable

Code

Guidelines

http://thc.org/root/phun/unmaintain.html

http://en.wikipedia.org/wiki/Category:Source_code
http://www.phptr.com/articles/article.asp?p=349749&seqNum=5&rl=1
http://en.wikipedia.org/wiki/Coupling_%28computer_science%29
http://en.wikipedia.org/wiki/Cohesion_%28computer_science%29
http://en.wikipedia.org/wiki/Comment
http://en.wikipedia.org/wiki/Hungarian_notation
http://ei.cs.vt.edu/~cs2604/Standards/Standards.html
http://www.htservices.com/Tools/VBandC/VB6Guidelines.doc
http://thc.org/root/phun/unmaintain.html

