
© 2023 AVEVA Group Limited and its subsidiaries. All rights reserved.
AVEVA, the AVEVA logos and AVEVA product names are trademarks or registered trademarks of AVEVA Group Limited or its subsidiaries
in the United Kingdom and other countries. Other brands and products names are the trademarks of their respective companies.

AVEVA Group Limited
High Cross, Madingley Road
Cambridge CB3 0HB, UK
Tel +44 (0)1223 556655
Fax +44 (0)1223 556666

aveva.com

Building Web Widgets for
Industrial Graphics

Rubén Rueda
1.0 / 03-05-2023

Building Web Widgets for Industrial Graphics PAGE 2 OF 26

Index

1. INTRODUCTION .. 3

1.1. WHAT IS A WEB WIDGET? .. 3

1.2. WHY USE WEB WIDGETS? .. 3

1.3. OBJECTIVE ... 3

1.4. TOOLS NEEDED .. 3

2. WEB WIDGET CODE... 4

2.1. WEB WIDGET FUNDAMENTALS .. 4

2.2. HANDS-ON: PART 1 ... 4

3. INTERFACE WITH SYSTEM PLATFORM ... 9

3.1. WJSON FILE ... 9

3.2. HANDS-ON: PART 2 ... 10

4. IMPORT INTO SYSTEM PLATFORM .. 13

4.1. WEB WIDGET PACKAGE ... 13

4.2. HANDS-ON: PART 3 ... 13

5. CONFIGURE A WEB WIDGET .. 15

5.1. HANDS-ON: PART 4 ... 15

6. TIPS AND TRICKS ... 19

7. SECURITY .. 20

8. ENHANCING THE WEB WIDGET ... 21

8.1. HANDS-ON: PART 5 ... 21

8.2. HANDS-ON: PART 6 ... 22

8.3. HANDS-ON: PART 7 ... 26

Building Web Widgets for Industrial Graphics PAGE 3 OF 26

1. Introduction
1.1. What is a Web Widget?

A web widget is a small web component composed by self-contained code blocks that provides on-screen user
interface elements. We can use web widgets to extend the functionality of AVEVA System Platform. For example, we
can get access to the device camera, microphone, screen sharing, etc, through the MediaDevices Web API, we can
leverage CSS animations, render 3D models with WebGL (you can use three.js library to make it easier) and many other
web technologies, all from within System Platform.

1.2. Why use Web Widgets?
Web widgets are a perfect fit for OMI Web and makes moving our application to the cloud seamlessly since they are
fully supported in cloud Unified Operations Centre. It allows users to utilize controls, libraries, and frameworks and
functionalities that are not available in the local environment.

1.3. Objective
Upon completion of the steps detailed in this document, you will be able to integrate an interactive chart built with a
web library to AVEVA System Platform.

1.4. Tools Needed
The tools needed to start building web widgets are:

• AVEVA System Platform

• Text editor (preferably Virtual Studio Code)

• Package tools

https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://threejs.org/

Building Web Widgets for Industrial Graphics PAGE 4 OF 26

2. Web Widget Code
2.1. Web Widget Fundamentals

The three main web programming languages used in developing web widgets (or any web component or application)
are HTML, CSS and JavaScript. HTML provides the basic structure of the code. CSS provides stylistic enhancements to
the code. JavaScript is used to control the behaviours of the different elements in the code.

Frameworks are tools that provides ready-made components or solutions that are customized in order to speed up
development. Popular web frameworks are Angular, React, Vue and jQuery.

For Enterprise Visualization we often want to show data in different kind of charts. For this, we can use web charting
libraries like HighCharts, AmCharts, AnyChart, Plotly, D3 and many others.

On the Hands-on section we are going to explore how to grab code from a demo chart and create our HTML, CSS and
JS files.

2.2. Hands-On: Part 1
Important: Javascript is case sensitive, be carefull with the coding.

1. Go to Desktop -> Hands On -> Building Web Widgets for Industrial Graphics.

2. Copy the WebWidgetToolkit folder into the desktop.

3. Open WebWidgetToolkit folder. Make a copy of the folder named webwidget and rename it to the name
that you want to give to your web widget. For this lab, we will be naming it FlexChart.

Note: It is better to make a copy of the webwidget folder to ensure that we don't modify the original
boilerplate code.

4. Open the newly created FlexChart folder. You will see two folders: resources and widgetname. Rename the
widgetname folder into FlexChart (both the parent and child folders must have the same name).

5. Open the child FlexChart folder. You will see four files: app.js, index.html, styles.css and widget.wjson. Open
these files using Visual Studio Code (or any other text editor).

https://developer.mozilla.org/en-US/docs/Learn/HTML
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://developer.mozilla.org/en-US/docs/Learn/JavaScript
https://angular.io/
https://react.dev/
https://vuejs.org/
https://jquery.com/
https://www.highcharts.com/
https://www.amcharts.com/
https://www.anychart.com/
https://plotly.com/graphing-libraries/
https://d3js.org/

Building Web Widgets for Industrial Graphics PAGE 5 OF 26

6. Go to www.highcharts.com/demo/column-basic using a browser.

NOTE: Please, review the Highcharts license policy if you want to use these charts.

7. Click on the ‘EDIT IN JSFIDDLE >’ button.

www.highcharts.com/demo/column-basic

Building Web Widgets for Industrial Graphics PAGE 6 OF 26

8. Copy the HTML code of the graph from JSFIDDLE (top-left) and paste it in the index.html file, specifically where
it says <!-- Put here HTML body elements --> code

9. Copy the CSS code from JSFIDDLE (top-right) and replace the code in styles.css file. Delete the original code of
the file and copy the one from JSFIDDLE.

Building Web Widgets for Industrial Graphics PAGE 7 OF 26

10. Copy the JavaScript code from JSFIDDLE (bottom-left) and paste it inside the function declaration (between
line 1 and 3) in the app.js file.

Building Web Widgets for Industrial Graphics PAGE 8 OF 26

11. Make sure to save the three files that you just modified.

12. You can open the index.html file with your browser to check if you've correctly copied the code. In the browser
you should see a graph just like the one from the HighCharts website.

Building Web Widgets for Industrial Graphics PAGE 9 OF 26

3. Interface with System Platform
3.1. WJSON File

The .wjson file is used to describe the properties of the web widget. To import it and enable the communication
between System Platform and our web widget, we need to include the code below in the index.html. This will create
a global object called cwidget.

Make sure that the name of the .wjson file matches the cwidget attribute of the highlighted script. In the case of the
picture above, the .wjson file is named as “widget”.

The supported property types in the .wjson file are: Integer, String, Float, Double and Boolean. Note that the Boolean
values will be represented as string values "True" or "False" in JavaScript. We can see an example below:

Building Web Widgets for Industrial Graphics PAGE 10 OF 26

For properties configuration in .wjson file, except ‘name’ user also can specify data type, default value, description and
allowEmpty, like below:

If no type here, it’s string by default. If user want to see description when design property, ‘desc’ should be set
here.

If allow to set empty for the property in design time, ‘allowEmpty’ need to be set to true, default is false.

The cwidget global object created by proxy.js script will have the properties defined in the .wjson file. These properties
can be read (In) or written (Out). It also includes a method called on which allows us to subscribe to changes on
property values. For this, the on method expects 2 arguments: property name and function to be executed on change.

On the next code snippet you can see how to interact with the cwidget object:

3.2. Hands-On: Part 2
1. In the app.js file, assign the chart created to a variable called chart, as shown below. This is so that we can

refer to the chart object in our future code.

(function (cwidget) {

 var chart = Highcharts.chart('container', {

 chart: {

 type: 'column'

 },

 title: {

 text: 'Monthly Average Rainfall'

Building Web Widgets for Industrial Graphics PAGE 11 OF 26

 },

2. In the app.js file, remove the rest of the series and leave only the Tokyo series.

3. Copy the data list of the Tokyo series: [49.0, 71.5, 106.4, 129.2, 144.0, 176.0, 135.6, 148.5, 216.4, 194.1,
95.6, 54.4] and replace the last code line of the app.js with the following code. The code ensures that should
there be no cwidget global variable, return the Data object created. Note that the data list is now a string
representation of the list.

})(window.cwidget || {

 Data: "[49.9, 71.5, 106.4, 129.2, 144.0, 176.0, 135.6, 148.5, 216.4, 194.1,

95.6, 54.4]"

});

4. Replace the data attribute of the Tokyo series with the line:

data: cwidget.Data ? JSON.parse(cwidget.Data) : []

5. This will assign the data property as the parsed cwidget.Data value if this property has a value, or an empty
array otherwise. Because the Data property is a string (representing a JavaScript Object), we need to parse it.

Building Web Widgets for Industrial Graphics PAGE 12 OF 26

6. Between the series information and the line you edited in Step 4, add the code as shown in the picture
below. This code will allow us to subscribe to changes whenever we have data for the Tokyo series.

cwidget.on('Data', function() {

 chart.series[0].setData(JSON.parse(cwidget.Data));

});

7. Lastly, in the widget.wjson file, change the name of the “0” attribute to “Data” and delete the other
properties.

8. Make sure to save all the files that you just modified.

Building Web Widgets for Industrial Graphics PAGE 13 OF 26

4. Import into System Platform
4.1. Web Widget Package

So far, you have created four files: index.html, style.css, app.js and widget.wjson. These files are placed under a folder
FlexChart (or any other widgetname). The FlexChart folder is placed under the FlexChart parent folder. Optionally,
you could also create a resources folder that contains the libraries used in the widget under the parent FlexChart
folder.

Then, use the PackageTool (PackageIntoCWP.cmd) provided in the WebWidgetToolkit to compress the parent
FlexChart folder and create a CWP file. CWP is a compressed file that includes the necessary files and folders for our
widget to work. The CWP file must be named the same as the widget name. The CWP is the file we import in AVEVA
System Platform as a web widget.

4.2. Hands-On: Part 3
1. Select parent FlexChart and move into PackageIntoCWP.cmd.

2. The PackageTool will generate the compressed package at the same folder.

Building Web Widgets for Industrial Graphics PAGE 14 OF 26

3. Open the AVEVA System Platform IDE. Go to Galaxy > Import > Visualization < Web Widget. Then select the
.cwp file. The imported web widget will be in the Graphic Toolbox inside the Widgets toolbox and available to
be used as any other Graphic.

Building Web Widgets for Industrial Graphics PAGE 15 OF 26

5. Configure a Web Widget
We can use the imported web widget either inside an Industrial Graphic (embedded) or directly in an OMI Layout.
Either way we are going to be able to read and set the properties previously defined in the .wjson file.

When embedded inside a Industrial Graphic we can set the properties as constant values or bind them to custom
properties or expressions.

Similarly, when using it directly on a Layout, widget properties can be set as:

• Constant

• In (values will be read from the widget)

• Out (values will be set by the widget)

• In/Out (values can be both read and written from the widget)

We often use namespaces to move values between different Graphics and Widgets.

5.1. Hands-On: Part 4
1. In the Graphic Toolset, right click on the Galaxy Name and toggle on the New > Symbol.

2. Rename the symbol to WidgetTest. Then, open the symbol to edit it in the Graphic Editor.

3. Click Edit > Embed Industrial Graphic. Go to Widgets and select FlexChart. You can resize the widget to a size
that you see fit.

Building Web Widgets for Industrial Graphics PAGE 16 OF 26

4. In the app.js file, copy the Data string. (the line highlighted below)

5. In System Platform IDE, under the Properties pane of the widget, you will see Widget Properties. In the Data
property, paste the data stream.

Building Web Widgets for Industrial Graphics PAGE 17 OF 26

6. Save and close the Graphic Editor.

7. In the Graphic Toolbox, create a new ScreenProfile and name it TestScreenProfile.

8. In the Graphic Toolbox, create a new layout and name it TestLayout. Double click it to open it in the Graphic
Editor.

9. Add a new pane to the right side of Pane1. Then, in the Toolbox section search for WidgetTest. Drag
WidgetTest on Pane1.

10. In the Toolbox section, search for FlexChart. Drag and drop it on Pane2.

11. Go to the properties section of the FlexChart widget and paste the Data Stream under the Widget Properties
section.

Building Web Widgets for Industrial Graphics PAGE 18 OF 26

12. Remove the last three data of the data stream list.

13. Save and Close the Editor.

14. In the Template Toolbox, in the System Folder, right click on $ViewApp. Create a New > Derived Template.
Rename it as $WidgetTest.

15. Doble click to $WidgetTest to configure the OMI App.

16. Select one ScreenProfile and click on Next.

17. Select the TestLayout and click Finish.

18. Click on the Preview Button. You should see the web widgets that you just imported.

Building Web Widgets for Industrial Graphics PAGE 19 OF 26

6. Tips and Tricks
• Make sure that the web widget code works before integrating into the System Platform.

• You can set the property type as string and serialize the data as JSON to pass complex data types.

• You can validate JSON strings through: https://jsonlint.com

• You can issue REST calls directly inside the widget

• If you need to react to an event inside the widget, set a property with the event data and subscribe to changes
on that property.

• You can debug the widget using browser developer tools while running the ViewApp in OMI Web.

• Also, adding this line to OnShow layout script, you will be able to open developer tools in OMI Desktop too:

MyViewApp.ViewApp.AllowBrowserDevTools = true;

• If you are using external libraries that are hosted in the cloud, it is recommended to download them to later
be able to use the web widget in environments without an internet connection. Libraries must locate in
resources/libs.

• In order to use the PackageTool, the path must not contain spaces.

• To import a new version of the web widget:

1. Close any industrial graphic or layout where the web widget is used.

2. Close ViewApp editor.

3. Delete the web widget.

4. Import the new web widget version.

https://jsonlint.com/

Building Web Widgets for Industrial Graphics PAGE 20 OF 26

7. Security
• Make sure that the web widget comes from a website or source that is trusted.

• Do not use functions in JavaScript that allows to execute any code coming, especially with the properties that
the clients can set. If not, malicious users will be able to write strings in such a way that they could steal user
information.

• Abide by the same security measures and precautions that you would take when building a web application.

• Be careful to not put any sensitive information inside the widget (in the code or through passing as an
attribute/property) since it is very easy to inspect. Any sensitive information should be kept on the backend
(System Platform).

Building Web Widgets for Industrial Graphics PAGE 21 OF 26

8. Enhancing the Web Widget
8.1. Hands-On: Part 5

In the index.html file, there are references to external libraries, so if the machine doesn’t have internet connection
the web widget will not work. A good practice is to use these libraries locally.

1. In the index.html, delete the last 3 referentes to the modules of highcharts. These 3 libraries are for
advanced features as exporting data, so for this example it’s not need it.

2. Copy the only reference to highcharts below line: <!-- Include here any other JS library -->

3. Click to the url reference or copy the url and paste it into a web browser. The library will appear inside the
web browser.

4. Righ-click and save as.

Building Web Widgets for Industrial Graphics PAGE 22 OF 26

5. Save it in the following location: WebWidgetToolkit\FlexChart\resources\libs.

6. Modify the reference for the local library instead of the cloud one.

<script src="../resources/libs/highcharts.js"></script>

7. Save the file.

8. Delete the previous package and create a new one. Remember, drag and drop the folder FlexChart into
PackageIntoCWP.cmd

9. Open the System Platform IDE, if any industrial graphic or layout is open, close it. Also close the ViewApp
Editor if it’s opened.

10. Go to Graphics->Widgets and delete the FlexChart.

11. Import the new version.

12. Open the ViewApp editor and click Preview to test the new version.

8.2. Hands-On: Part 6
This lab is an example of how to pass data from the web widget to System Platform. Clicking on a bar generates an
event and at that moment a set of data is captured, which is passed in json format to the System Platform through a
string-type property.

Here is the documentation of the function used in this lab:
https://api.highcharts.com/highcharts/plotOptions.series.events.click

1. With app.js file opened, add the following code inside plotOptions.

,

series: { events: { click: function(event) {

cwidget.Click = JSON.stringify({

 seriesIndex: event.point.series.index,

 seriesName: event.point.series.name,

 pointIndex: event.point.index,

 pointName: event.point.name,

 category: event.point.category,

 x: event.point.x,

 y: event.point.y

});

} } }

https://api.highcharts.com/highcharts/plotOptions.series.events.click

Building Web Widgets for Industrial Graphics PAGE 23 OF 26

2. The new property must be defined in the widget.wjson. Additionally, we are going to add a multilingual
description.

,

 "1": {

 "name": "Click",

 "type": "String",

 "value": "",

 "desc": {

 "1033": "English description",

 "1036": "French description",

 "1031": "English description",

 "1041": "Japanese description",

 "2052": "Chinese description"

 }

}

Building Web Widgets for Industrial Graphics PAGE 24 OF 26

3. Save the file.

4. Delete the previous package, drag and drop the folder FlexChart into PackageIntoCWP.cmd to create a new
one.

5. Open the System Platform IDE, if any industrial graphic or layout is open, close it. Also close the ViewApp
Editor if it’s opened.

6. Go to Graphics->Widgets and delete the FlexChart.

7. Import the new version.

8. Go to Graphics and open WidgetTest graphic.

9. Verify that the new property appears and has the description.

10. Create a new string Custom Property called ClickData.

11. Add a new TextBox below the FlexChart widget.

12. Add Value Display animation to the TextBox1 to display string data. On the reference box enter ClickData.

Building Web Widgets for Industrial Graphics PAGE 25 OF 26

13. Open the FlexChart widget properties. Click the 3 dots button on WidgetProperties.

14. Modify the Click property to Reference.

15. Write ClickData as reference.

16. Close and save the graphic.

17. Open the ViewApp editor and click Preview to test the new version.

18. Click on any column of the left chart and the json data should appear on the text box.

Building Web Widgets for Industrial Graphics PAGE 26 OF 26

8.3. Hands-On: Part 7
Modify the web widget code to change the chart type in runtime. Configure these 5 types: area, bar, column, line
and pie. You should achieve something like:

